Glassiness, rigidity, and jamming of frictionless soft core disks.

نویسندگان

  • Daniel Vågberg
  • Peter Olsson
  • S Teitel
چکیده

The jamming of bidisperse soft core disks is considered, using a variety of different protocols to produce the jammed state. In agreement with other works, we find that cooling and compression can lead to a broad range of jamming packing fractions ϕ{J}, depending on cooling rate and initial configuration; the larger the degree of big particle clustering in the initial configuration, the larger will be the value of ϕ{J}. In contrast, we find that shearing disrupts particle clustering, leading to a much narrower range of ϕ{J} as the shear strain rate varies. In the limit of vanishingly small shear strain rate, we find a unique nontrivial value for the jamming density that is independent of the initial system configuration. We conclude that shear driven jamming is a unique and well-defined critical point in the space of shear driven steady states. We clarify the relation between glassy behavior, rigidity, and jamming in such systems and relate our results to recent experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Athermal Jamming vs Thermalized Glassiness in Sheared Frictionless Particles

Numerical simulations of soft-core frictionless disks in two dimensions are carried out to study behavior of a simple liquid as a function of thermal temperature T , packing fraction φ, and uniform applied shear strain rate γ̇. Inferring the hard-core limit from our soft-core results, we find that it depends on the two parameters φ and T/γ̇. T/γ̇ → 0 defines the athermal limit in which a shear dri...

متن کامل

Athermal jamming versus thermalized glassiness in sheared frictionless particles.

Numerical simulations of soft-core frictionless disks in two dimensions are carried out to study the behavior of a simple liquid as a function of temperature T, packing fraction φ, and uniform applied shear strain rate γ[over ·]. Inferring the hard-core limit from our soft-core results, we find that it depends on the two parameters φ and T/γ[over ·]. Here T/γ[over ·]→0 defines the athermal limi...

متن کامل

Dissipation and Rheology of Sheared Soft-Core Frictionless Disks Below Jamming

We use numerical simulations to investigate the effect that different models of energy dissipation have on the rheology of soft-core frictionless disks, below jamming in two dimensions. We find that it is not necessarily the mass of the particles that determines whether a system has Bagnoldian or Newtonian rheology, but rather the presence or absence of large connected clusters of particles. We...

متن کامل

Herschel-Bulkley shearing rheology near the athermal jamming transition.

We consider the rheology of soft-core frictionless disks in two dimensions in the neighborhood of the athermal jamming transition. From numerical simulations of bidisperse, overdamped particles, we argue that the divergence of the viscosity below jamming is characteristic of the hard-core limit, independent of the particular soft-core interaction. We develop a mapping from soft-core to hard-cor...

متن کامل

Duality in Shearing Rheology Near the Athermal Jamming Transition

We consider the rheology of soft-core frictionless disks in two dimensions in the neighborhood of the athermal jamming transition. From numerical simulations of bidisperse, overdamped, particles, we argue that the divergence of the viscosity below jamming is characteristic of the hard-core limit, independent of the particular soft-core interaction. We develop a mapping from soft-core to hardcor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 83 3 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2011